役に立つ本や資料
-
可解構造を持つ物理模型(非相対論的水素原子模型が中心)を対象とした数理物理を考えるにあたって役立つ本や資料を列挙.
■力学的対称性
-
Bohm, A., Ne'Eman, Y., & Barut, A. O. (1989). Dynamical Groups and Spectrum Generating Algebras. World Scientific.
-
Guillemin, V., & Sternberg, S. (2006). Variations on a Theme by Kepler (Vol. 42). American Mathematical Society.
-
Wulfman, C. E. (2010). Dynamical Symmetry. World Scientific.
-
Kikoin, K., Kiselev, M., & Avishai, Y. (2011). Dynamical symmetries for nanostructures: implicit symmetries in single-electron transport through real and artificial molecules. Springer Science & Business Media.
-
Cordani, B. (2012). The Kepler problem: group theoretical aspects, regularization and quantization, with application to the study of perturbations (Vol. 29). Birkhäuser.
-
Lee, J. H. (2016). Geometry of the Kepler Problem and the Kepler-Lorentz Duality. Bachelor thesis of Amherst College. (link of pdf)
-
Bander, M., & Itzykson, C. (1966). Group theory and the hydrogen atom (I). Reviews of modern Physics, 38(2), 330. (link of pdf)
-
Bander, M., & Itzykson, C. (1966). Group theory and the hydrogen atom (II). Reviews of Modern Physics, 38(2), 346. (link of pdf)
-
Rowe, D. J., Carvalho, M. J., & Repka, J. (2012). Dual pairing of symmetry and dynamical groups in physics. Reviews of Modern Physics, 84(2), 711. (link)
-
Cariglia, M. (2014). Hidden symmetries of dynamics in classical and quantum physics. Reviews of Modern Physics, 86(4), 1283. (link)
-
m-a-o さんブログポスト『水素原子の表現論』,はてなブログ. (link)
-
国場敦夫 (2007)『ラプラス-ルンゲ-レンツベクトル--Gruppen Pestの始祖的例題』数理科学 45(7), 50-55, 2007-07 サイエンス社.(link of pdf)
-
島和久 (1969)『群の表現と量子力学』数理科学 7(12), 50-52,1969-12 ダイヤモンド社.
■解析力学
-
Marsden, J. E., & Ratiu, T. S. (2010). Introduction to Mechanics and Symmetry, Second Edition: A Basic Exposition of Classical Mechanical Systems (Texts in Applied Mathematics (17)) . Springer New York.
■量子力学
-
Schiff, L. I. (1968). Quantum Mechanics (Pure & Applied Physics). McGraw-Hill College.
■経路積分
-
Kleinert, H. (2009). Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edition. World Scientific. (link)
-
Grosche, C. (1993). An Introduction into the Feynman Path Integral. arXiv:hep-th/9302097v1. (link)
■変数分離
-
Moon, P.,& Spencer, D. E. (1971). Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions. Springer Berlin Heidelberg.
-
Miller, W., Kalnins, E. G., & Kress. J. M. (2018). Separation of Variables and Superintegrability: The symmetry of solvable systems. IOP Expanding Physics.
-
Kalnins, E. G., Miller, Jr, W., & Winternitz, P. (1976). The Group O(4), Separation of Variables and the Hydrogen Atom. SIAM Journal on Applied Mathematics, 30(4), 630-664. (link)
-
Boyer, C. P., Kalnins, E. G., & Miller, W. (1976). Symmetry and separation of variables for the Helmholtz and Laplace equations. Nagoya Mathematical Journal, 60, 35-80. (link)
■因数分解解法
-
Infeld, L., & Hull, T. E. (1951). The factorization method. Reviews of modern Physics, 23(1), 21. (link)
■超可積分系
-
Miller Jr, W., Post, S., & Winternitz, P. (2013). Classical and quantum superintegrability with applications. Journal of Physics A: Mathematical and Theoretical, 46(42), 423001. (link)
■KS変換、KS正則化
-
Kustaanheimo, P., Schinzel, A., Davenport, H., & Stiefel, E. (1965). Perturbation theory of Kepler motion based on spinor regularization. Journal für die reine und angewandte Mathematik, 1965(218), 204-219. (link)
-
Cornish, F. H. J. (1984). The hydrogen atom and the four-dimensional harmonic oscillator. Journal of Physics A: Mathematical and General, 17(2), 323. (link)
- Saha, P. (2009). Interpreting the Kustaanheimo–Stiefel transform in gravitational dynamics. Monthly Notices of the Royal Astronomical Society, 400(1), 228-231. (link)
-
Vicens, J. R. (2016). Regularization in Astrodynamics: applications to relative motion, low-thrust missions, and orbit propagation. Doctoral dissertation, Universidad Politécnica de Madrid. (link of pdf)
-
De Vries, S. (2018). Reductions on the Kepler problem. Master's Thesis, University of Groningen. (link)
■Conformal 正則化
-
Moser, J. (1970). Regularization of Kepler's problem and the averaging method on a manifold. Communications on pure and applied mathematics, 23(4), 609-636. (link)
-
Kummer, M. (1982). On the regularization of the Kepler problem. Communications in Mathematical Physics, 84(1), 133-152. (link)
-
Cordani, B. (1986). Conformal regularization of the Kepler problem. Communications in mathematical physics, 103(3), 403-413. (link)
■超対称性量子力学(SUSY QM)
-
Cooper, F., Khare, A., & Sukhatme, U. (1995). Supersymmetry and quantum mechanics. Physics Reports, 251(5-6), 267-385. (link)
■コヒーレント状態
-
Glauber, R. J. (1963). The quantum theory of optical coherence. Physical Review, 130(6), 2529. (link)
■Complete Symmetry
■Conformal Mechanics
-
Saghatelian, A. (2014). Action-Angle Variables In Conformal Mechanics. PhD thesis. arXiv preprint arXiv:1410.6515. (link)
■モノドロミー
-
Chen, C., Ivory, M., Aubin, S., & Delos, J. B. (2014). Dynamical monodromy. Physical Review E, 89(1), 012919. (link)
-
Dullin, H. R., & Waalkens, H. (2018). Defect in the joint spectrum of hydrogen due to monodromy. Physical review letters, 120(2), 020507. (link)
■一次元水素原子
■MICZ-Kepler
■南部力学
■直交多項式
-
Szego, G. (1981). Orthogonal Polynomials. (Colloquium Publications) American Mathematical Soc..
-
Chihara, T. S. (2011). An Introduction to Orthogonal Polynomials. (Dover Books on Mathematics) Dover Publications.
-
青本和彦(2013)直交多項式入門.数学書房.
-
佐々木隆(2016). 可解な量子力学系の数理物理 : 直交多項式の生み出す多様な展開,(臨時別冊・数理科学, . SGCライブラリ||SGC ライブラリ ; 122).サイエンス社.
■調和解析
-
竹内勝 (1975) .現代の球関数,(数学選書) .岩波書店.
-
岡本清郷(1980).等質空間上の解析学―リー群論的方法による序説,(紀伊国屋数学叢書〈19〉).紀伊国屋書店.
-
野村隆昭(2018).球面調和函数と群の表現.日本評論社.
■超幾何級数,超幾何関数
-
原岡喜重(2002).超幾何関数 (すうがくの風景).朝倉書店.
■楕円関数
-
梅村 浩 (2000).楕円関数論―楕円曲線の解析学.東京大学出版会.
■特殊関数
-
Arfken, G. B., Weber, H. J., & Harris, F. E. (2012). Mathematical Methods for Physicists: A Comprehensive Guide. Academic Press.
-
Lebedev, N. N., translated by Silverman, R. A. (1972). Special Functions & Their Applications. Dover Books on Mathematics.
-
Watson, G. N. (1995). A Treatise on the Theory of Bessel Functions, Second Edition. Cambridge University Press.
■Lie群,Lie代数
-
松島与三(1956).リー環論.共立出版.
-
Gilmore, R. (1974). Lie Groups, Lie Algebras, and Some of Their Applications. Wiley, New York.
-
Wybourne, B. G. (1974). Classical Groups for Physicists. Wiley, London.
-
Barut, A. O., & Raczka, R. (1987).Theory of Group Representations and Applications. World Scientific.
-
Gilmore, R. (2008). Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and Chemists. Cambridge University Press.
-
井ノ口順一(2018).はじめて学ぶリー環―線型代数から始めよう.現代数学社.
-
島和久(1981).連続群とその表現 (応用数学叢書). 岩波書店.
-
Mirman, R. (2005). Quantum Field Theory Conformal Group Theory Conformal Field Theory. iUniverse.
■群論
-
Alperin, J. L., & Bell, R. B. (1995). Groups and Representations. Springer, New York.
■線形代数
-
杉浦光夫, 横沼健雄(2002).ジョルダン標準形・テンソル代数 (岩波基礎数学選書).岩波書店.
■微分方程式
■関数論・複素解析
© 2023 adhara_mathphys